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Table S1: Backbone RMSD (Å) and cluster population for the three most pop-
ulous clusters for each system.

Cluster 1 Cluster 2 Cluster 3

Target RMSD Pop RMSD Pop RMSD Pop

Ubiquitin 1.0 0.90 3.6 0.05 1.4 0.02
Protein G 2.8 0.42 0.9 0.13 2.5 0.12
Crystallin 3.5 0.28 3.5 0.16 2.8 0.14
Lysozyme 3.6 0.13 5.1 0.10 4.0 0.09
Thioredoxin 2.6 0.42 3.0 0.32 2.8 0.15
Ras 3.0 0.76 3.3 0.12 3.5 0.09
CheY 4.3 0.37 3.2 0.33 2.8 0.14
Calponin 4.9 0.76 7.1 0.12 5.5 0.06

1 Supplemental Results

1.1 Cluster populations

Table S1 shows the RMSD and population for the top three clusters for each
system.

1.2 Huber et al Ensemble

Figure S1 shows the 20 lowest energy (of 200 total structures of ubiquitin pro-
duced by CYANA based on ILV-methyl labeled NMR data and TALOS pre-
dicted backbone torsion angles. CYANA produces a broad ensemble, where
even most of the 20 lowest-energy structures are far from native.

1.3 Funneled energy landscape

Figure S2 shows that MELD produces a highly funneled energy landscape.
Replicas at the top of the ladder explore a broad basin of non-native struc-
tures. Replicas at the bottom sample mostly near native structures (see inset).

1.4 MELD energy versus RMSD

Figure S3 shows that at the lowest temperature, the MELD energy does not
strongly correlate with the RMSD. There are many alternative structures that
are in good agreement with the experimental data.

1.5 Results from EvFold

Table S2 shows that MELD produces superior structures to the CNS-based
EvFold pipeline using the same predicted contacts.

Figure S4 shows the energy of the native structure as a function of the active
fraction and the distance cutoff. For all systems, the parameters used in this
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Figure S1: Lowest energy (20 of 200) structures produced with CYANA[1] cou-
pled with predicted backbone torsion angles from Talos+[2] and short-range
proton-proton distance information from ILV-methyl-labeled samples[3]. On
average, the structures are not near-native, have poor secondary structures,
and limited hydrogen bonding.

4



Figure S2: Conformational landscape in MELD simulations of ubiquitin using
solid-state NMR data, showing a clearly funneled energy landscape. The inset
shows the RMSD distribution at the lowest replica, demonstrating that most
structures are below 1.5Å RMSD.

Table S2: Backbone RMSD (Å) between native and models produced by MELD
or EvFold.

MELD EvFold

Target Best Best Clust Best Lowest E

Thioredoxin 1.5 2.6 3.7 4.7
Ras 2.5 3.0 3.4 3.6
CheY 1.8 3.2 4.0 5.4
Calponin 4.3 4.9 5.2 11.4

study lie somewhat outside of the zero-energy region. However, all but calponin
are close. Calponin would require a large reduction in active fraction or a large
increase in distance cutoff to reach the zero-energy region.

2 Details of MELD

MELD generates a minimum free energy ensemble, subject to sparse, ambigu-
ous, and probabalistic restraints. The MELD energy function can be explained
in therms of three concepts: restraints, groups, and collections.

2.1 Restraints

MELD has a variety of different restraint forces, including flat-bottom harmonic
restraints on distances or torsion angles, spline-based restraints on distances,
and bicubic spline-based restraints on pairs of torsion angles. The specific func-
tional forms are given in Section 4. Importantly, restraints in MELD are always
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Figure S3: Each panel shows the MELD energy versus RMSD. In most cases,
there is little correlation between the MELD energy of the sampled structures
and the RMSD to native, which indicates that there are many possible con-
formations that are in good agreement with the experimental data. The red
circle shows the native structure, which is discussed in the “enforcing incorrect
restraints reduces accuracy” section of the main text.

6



0.2

0.4

0.6

0.8

1.0

A
ct

iv
e 

Fr
ac

tio
n

Thioredoxin CheY

0 2 4 6 8 10 12 14
Distance Cutoff ( )

0.2

0.4

0.6

0.8

1.0

A
ct

iv
e 

Fr
ac

tio
n

Ras

0 2 4 6 8 10 12 14
Distance Cutoff ( )

Calponin

0

160

320

480

640

800

M
E

LD
 R

es
tra

in
t E

ne
rg

y 
(k

J/
m

ol
)

Figure S4: MELD energy of the native structure as a function of the active
fraction of predicted contacts and the distance cutoff used to define a contact.
The black dot indicates the parameters used in this study.

defined to be non-negative, so Emeld ≥ 0.

2.2 Groups

Groups aggregate multiple restraints in collective, multi-body restraints such
that only a specified fraction of restraints are activated. Each restraint must
belong to exactly one group. The energy of group i is:

Egrp
i =

ngrp
active,i∑
j=1

Erest
i,j , (1)

where the component restraints are sorted by energy:

Erest
i,1 ≤ Erest

i,2 ≤ · · · ≤ Erest
i,Ni

. (2)

The {Erest
i,j } are the energies of the component restraints that makeup group i

and ngrpactive,i is a user-specified parameter that controls how many restraints are
active from group i.

2.3 Collections

Collections are analogous to groups and provide a second level of sorting and
activation to handle ambiguity and uncertainty. Groups combine restraints into
collective terms, while collections combine groups into collective terms. Each
restraint must belong to exactly one group, whereas each group must belong to
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exactly one collection. The energy for collection i is:

Ecoll
i =

ncoll
active,i∑
j=1

Egrp
i,j , (3)

where the component groups are sorted by energy:

Egrp
i,1 ≤ E

grp
i,2 ≤ · · · ≤ E

grp
i,Ni

. (4)

The {Egrp
i,j } are the energies of the component groups that makeup collection

i and ncollactive,i is a user-specified parameter that controls how many groups are
active from collection i.

The total MELD energy in the simulation is:

Emeld =

Ncoll∑
i=1

Ecoll
i . (5)

2.4 Guarantees of MELD

Consider two sets of conformations: the native conformations (x ∈ N) and
some other arbitrary set of conformations (x ∈ X). If we examine the relative
populations of these two states, both with and without MELD restraints, we
have:

R =
pNmeld

pXmeld

pXamber

pNamber

=

∫
x∈N

e−β[Eamber(x)+Emeld(x)]dx∫
x∈X

e−β[Eamber(x)+Emeld(x)]dx

∫
x∈X

e−β[Eamber(x)]dx∫
x∈N

e−β[Eamber(x)]dx
.

(6)

If the native basin is compatible with the data, then by definition Emeld = 0 for
all x ∈ N , and Eq. 6 simplifies to:

R =

∫
x∈X

e−β[Eamber(x)]dx∫
x∈X

e−β[Eamber(x)+Emeld(x)]dx
. (7)

By construction Emeld ≥ 0, which implies R ≥ 1.
This result provides a strong guarantee. If Emeld is constructed appropriately—

that is, the restraints are combined into group and collections with nactive,i’s set
appropriately—then Emeld will be zero for the native basin and we are assured
that the population will go up compared to with the force field alone. This
result also provides a strong constraint. If Emeld > 0 for the native basin, then
we have no guaranties about populations and we are less likely to produce the
correct structures.
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Ensuring that Emeld = 0 for the native basin generally comes down to setting
the nactive,i appropriately for each group or collection. The value of nactive,i for a
group determines how many of the component restraints MELD must “believe”.
Ideally, the value of nactive,i will correspond exactly to the number of correct
restraints. If nactive,i is set too high, the system will be forced to believe data
that is wrong. If nactive,i is set too low, then we are ignoring data that could
be providing valuable information. In practice, we set nactive,i based on past
experience with that particular source of data.

2.5 Replica Exchange

The introduction of MELD restraints creates large barriers in the potential
energy (Figure 1 in main text). Simulations at ambient temperature would
quickly become trapped in a single basin, producing non-ergodic sampling. To
overcome these barriers, we use Hamiltonian replica exchange (H-REMD)[4] to
sample conformations.

MELD uses a 1-dimensional Hamiltonian exchange “ladder”, where we vary
both the temperature and the force constants of the MELD restraints. We
define a parameter, α ∈ [0, 1], which varies along our ladder. The lowest replica
always has α = 0 and the highest α = 1. Initially, the other replicas are spaced
linearly. Each parameter that can vary (e.g. temperature or force constant) is
expressed as a function of α (e.g., T (α), k(α)). The value of α at each replica
thereby determines the value of the parameters. During simulation, an iterative
procedure occasionally adjusts the values of α at intermediate replicas to obtain
equal acceptance rates between all pairs of adjacent replicas.

We typically divide the interval [0, 1] in half. The temperature varies geomet-
rically between 300K and 450K over α ∈ [0, 0.5], while the weight of the MELD
restraints varies from 1.0 to 0.0 over α ∈ [0.5, 1.0]. We find that this scheme
provides good conformational sampling. Only the structures that are compat-
ible with both the MELD restraints and the underlying force field are able to
reach the lowest replica, which is clustered to determine the lowest-free-energy
conformational basins[5, 6].

Overall, this approach is similar to simulated annealing strategies used in
NMR structure determination [7]. However, unlike simulated annealing H-
REMD produces Boltzmann distributions, where the population of a set of
structures is related to its free energy. This allows MELD to select structures
based on free energy rather than energy.

3 Simulation parameters

All molecular dynamics simulations were performed using a version of the OpenMM
[8] simulation package modified to include the MELD forces. All simulations
were performed using a modified version of the forthcoming Amber ff14sb force
field (Carlos Simmerling, personal communication). The force field was modi-
fied by adding CMAP like corrections[9] in order to correct the balance between
the helical and extended regions in implicit solvent. We use the GB model of
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Onufriev, Bashford, and Case [10] to represent the solvent implicitly. Langevin
dynamics simulations were carried out with at 2 fs time step and replica ex-
changes were typically attempted every 10 ps.

4 Functional forms of MELD restraints

meld currently supports four different types of restraints. Extension to add
new types of restraints is straightforward.

4.1 Harmonic distance restraints

The distance, rij , between two atoms i and j, can be restrained using flat-bottom
harmonic restraints of the form:

E(rij) =



1
2k(r1 − r2)(2rij − r1 − r2) if rij < r1
1
2k(rij − r2)2 if r1 ≤ rij < r2

0 if r2 ≤ rij < r3
1
2k(rij − r3)2 if r3 ≤ rij < r4
1
2k(r4 − r3)(2rij − r4 − r3) if r4 ≤ rij ,

(8)

where r1–r4 are distance cutoffs delineating the linear, quadratic, and flat re-
gions of the potential, and k is the force constant.

4.2 Spline-based distance restraints

The distance, rij , between two atoms i and j can be restrained using a cubic-
spline-based potential. The domain of E(r) is divided into a series of piecewise
cubic regions. First, we find the region, n, for the current value of rij . Next,
we compute a parameter t ∈ [0, 1]:

t =
rij − rmax,n

rmax,n − rmin,n
. (9)

The energy is defined as:

E(t) = a0,n + a1,nt+ a2,nt
2 + a3,nt

3, (10)

where the ak,n values are parameters for region n, which are required to give
C2 continuity at the boundary between regions.

4.3 Harmonic torsion restraints

The torsion angle, φ, between four atoms (i, j, k, l) can be restrained using
flat-bottomed harmonic restraints.

E(phi) =


1
2k(φ′ + ∆φ)2 if φ′ < −∆φ
1
2k(φ′ −∆φ)2 if φ′ > ∆φ

0 otherwise,

(11)
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where
φ′ = (φ− φ0)→ (−180,+180] (12)

is the difference between the current and desired angles modulo 180 degrees, φ0
is the desired angle, and 2∆φ is the width of the zero energy region around φ0.

4.4 Bicubic-spline-based torsion pair restraints

A pair of torsion angles, φ and ψ, can be restrained using a bicubic-spline-based
potential similar to the CMAP potential[9]. This potential is typically placed
on the backbone φ/ψ angles for an amino acid. First, φ and ψ are converted
into grid indices i and j. Then, the energy is calculated as:

E(φ, ψ) =

4∑
i=1

4∑
j=1

Cij

(
φ− φmin,i

∆φ

)i−1(
ψ − ψmin,j

∆ψ

)j−1
, (13)

where Cij are the spline coefficients, ∆φ and ∆ψ are the widths of the grid cells,
and φmin,i and ψmin,j are the edges of grid cell i, j.

5 Data used in calculations

Figures S5–S12 summarize the data used in each case study. The upper portion
of each panel shows the experimental structure and any distance restraints used
in the calculation. The lower panel shows the predicted (upper band) and
actual (lower band) secondary structures, along with the distance restraints.
All possible Cα pairs with |i − j| > 10 and ||ri − rj || < 10 Å in the native
structure are shown in grey. Correct distance restraints are shown in blue;
incorrect distance restraints are shown in red. For the two EPR datasets (αA-
Crystallin and T4 Lysozyme) restraints are colored depending on the measured
distance; short distances (< 12 Å) are blue, long distances (> 12 Å) are cyan.

5.1 Treatment of secondary structure predictions

All secondary structure restraints in this work were based on predictions from
PSIPRED[11]. We break the protein into (Nres − 4) overlapping 5-residue frag-
ments. If 4/5 or 5/5 of the residues in a fragment are predicted in state H or E,
then we apply secondary structure restraints as described below. For all other
fragments, we apply no restraints.

If the fragment is predicted to be likely helical or likely extended, we apply
the following restraints (with local residue numbering from 1–5): backbone φ
angles of residues 2–5, backbone ψ angles of residues 1–4, and distance restraints
between the Cα atoms of residues (1,4), (2,5), and (1,5). The parameters for all
restraints are given below. These 11 restraints (3 distances and 8 torsions) are
combined into a single group with all 11 restraints active, so that they behave as
a single “secondary structure fragment” restraint. All of the secondary structure
restraints are combined into a collection with an active fraction of 0.75, which
allows some 5-mers to differ from their predicted secondary structures.
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Figure S5: Data used in Ubiquitin calculation.
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Figure S7: Data used in αA-Crystallin calculation.
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Figure S8: Data used in T4 Lysozyme calculation.
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Figure S9: Data used in Thioredoxin calculation
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Figure S10: Data used in CheY calculation.
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Figure S11: Data used in Ras calculation.
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The parameters for predicted helices are:

• φ between −62.5± 17.5

• ψ between −42.5± 17.5

• torsion force constant of 2.5 kJ mol−1 (10◦)−2

• 1–4 distance between 4.85 Å and 5.61 Å

• 2–5 distance between 4.85 Å and 5.61 Å

• 1–5 distance between 5.81 Å and 6.84 Å

• distance force constant of 2500 kJ mol−1 nm−2.

The parameters for predicted strands are:

• φ within 117.5± 27.5

• ψ within 145± 25

• torsion force constant of 2.5 kJ mol−1 (10◦)−2

• 1–4 distance between 7.85 Å and 10.63 Å

• 2–5 distance between 7.85 Å and 10.63 Å

• 1–5 distance between 10.86 Å and 13.94 Å

• distance force constant of 2500 kJ mol−1 nm−2.

5.2 Treatment of residue–residue information

We divide the treatment of residue–residue information into three categories:
sparse, ambiguous, and probabilistic.

Sparse: this information informs about short residue–residue distances.
This information is sparse, but otherwise unambiguous and reliable. The infor-
mation is turned into flat-bottomed harmonic distance restraints and combined
into a single group with all restraints active.

For the Huber solid-state NMR dataset, the restraints were between the
terminal methyl groups of Ile, Leu, and Val residues. The stereospecific proton–
proton interactions were mapped onto interactions between the corresponding
carbon atoms. The energy was zero at separations up to 7Å. The energy in-
creases quadratically from 7 to 8Å and then linearly beyond 8Å, with a force
constant of 1000 kJ mol−1 nm−2.

For Protein G, restraints were added between the Cα atoms of author se-
lected residues: (3, 51), (9, 56), (3, 18), (42, 55). The energy was zero at
separations up to 6Å, increasing quadratically from 6 to 7Å, and then linearly
beyond 7Å, with a force constant of 1000 kJ mol−1 nm−2.

All restraints were scaled from full-strength to zero over the interval α ∈
[0.5, 1].
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Ambiguous: this information comes from site-directed spin label EPR ex-
periments. It is sparse and measures a wide variety of distances with large
uncertainties. We use the motion-on-a-cone knowledge-based energy model of
Hirst et al [12] to turn each measured distance into distance restraint that re-
flects the uncertainty of mapping the experimental data into a geometric feature
of the protein. We use either Equations 14 and 15 or a knowledge-based poten-
tial. The restraints are combined into a single group with all restraints active.

When using Equations 14 and 15, the energy was zero within dlower and
dupper, increasing quadratically 1Å outside of these bounds, and linearly there-
after, with a force constant of 250 kJ mol−1 nm−2.

For αA-Crystallin, we used the strategy from Ref. [13], where we set the
allowed upper and lower bounds between Cβ atoms to:

dlower = dmeasured − σmeasured − 12.5Å (14)

and
dupper = dmeasured + σmeasured + 2.5Å, (15)

where dmeasured is the measured probe–probe distance from Ref. [13], σmeasured

is the measurement uncertainty, and 12.5Å and 2.5Å are constants based on a
motion-on-a-cone model [13] of the spin-label probes.

For T4-Lysozyme, we followed the approach of Ref [12] and used a knowledge-
based potential (also based on the motion-on-a-cone model) to represent the un-
certainty in the Cβ–Cβ distance due to the flexible probe (Figure 2E of Ref [12]),
which we implemented using cubic splines. The measured distance restraints
are from Refs. [13] and [14].

Calculations using the knowledge-based approach were conducted as follows.
The knowledge-based potential was digitized from Figure 2D of Ref. [12]. The
experimental data was modeled as a Gaussian, with a mean and variance de-
termined from the experimental data. This Gaussian was convolved with the
digitized knowledge-based potential on a grid from 0 to 80Å with 1Å resolution.
The resulting distribution was normalized, a pseudo-count of 1×10−8 was added
to each bin, and then the distribution was renormalized (this ensures that no
bins have zero count and ensures that the maximum energy is bounded). The
energy was then taken as −kBT ln ρ(x), where ρ(x) is the normalized distribu-
tion. This gives a broad distribution that takes into account uncertainty from
both measurement error and probe flexibility. The resulting energy term varies
from 0 to ∼ 40 kJ mol−1.

Restraints were scaled sequentially in the interval α ∈ [0.5, 1.0], so that short
distances were added first (at higher α) and long distances later (α closer to
0.5).

Uncertain: this information comes from residue–residue contacts predicted
from sequence evolution[15]. We take the top Nresidues predicted contacts from
the EvFold server (http://evfold.org/evfold-web/evfold.do). The predicted con-
tact could be any two atoms from the two residues involved in the contact being
close in space. However, for computational efficiency we map this contacts onto
the possible combinations of Cβ and Cα pairs. This yields groups with four
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possible combinations (two when involving one glycine and one when involving
two glycines), one of which is active. The groups belong to a collection in which
the active fraction is set to 0.80. Individually, each distance restraint has a flat
bottom harmonic restraint with no restraint up to 6Å,the energy then increases
quadratically up to 10Å and linearly afterwards. All restraints were scaled from
full-strength to zero over the interval α ∈ [0, 1]. Likewise, temperatures were
scaled geometrically between 300 and 450K in the range of α ∈ [0, 1].

6 Force discontinuities

MELD uses sorting to determine the activity of each restraint in a group (or
each group in a collection). This causes one or more forces to be instantaneously
switched off at the same time others switch on. The construction of the energy
function guarantees that the energy will be continuous. But the force will not:
it has “cusps” when the active restraints change (see Figure 1 in the main text).
These discontinuities cannot be integrated accurately; each time the set of active
restraints changes, an integration error occurs.

In this section, we evaluate the effects of these errors. We use a simple test
system, which we expect to be more pathological than our production systems.
We assess the ability of MELD to produce correct results in three ways: (1)
energy conservation, (2) expected temperature dependence of energy distribu-
tions, and (3) comparison with exact Monte Carlo simulations. We find that
MELD produces the expected distributions.

6.1 Test system

Our test system consists of three carbon-mass particles confined to a 5× 5× 5

Å
3

region of the non-periodic simulation box using a flat-bottomed harmonic
potential with a force constant of 1000 kJ mol−1 nm−2. In tests without meld
restraints, these particles do not interact at all—i.e. they are an ideal gas. In
tests with meld restraints, we add three restraints: between particles A and B,
between B and C, and between A and C. The restraints have zero energy from
zero to 1 Å, quadratic energy from 1 to 2 Å, and linear energy beyond 2 Å,
with a force constant of 250 kJ mol−1 nm−2. These parameters mimic typical
values used for the protein systems in this study. We place all three restraints
in a single group with one restraint active.

Due to the small volume and frequent collisions, the active restraint changes
frequently, causing an integration error each time. In our protein systems, the
active restraints change less frequently as the protein spends long periods of
time trapped in a single basin defined by a set of restraints. This is especially
true at low temperatures. Therefore, we expect this simple test system to be
more sensitive to integration errors.
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Figure S13: Non-thermostatted simulations without MELD restraints conserve
energy.
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Figure S14: Non-thermostatted simulations with MELD restraints undergo ran-
dom energy drift with a small systematic error. Each faint trace is a separate
simulation. The darker line is the mean drift.
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6.2 Energy conservation

We assessed energy conservation by running 1000 short (1 ns) simulations of our
three-particle test system. These simulations used a Verlet integrator without
temperature coupling, with a 2 fs timestep, and were started from random initial
velocities drawn from a Maxwell-Boltzmann distribution at 300 K.

Simulations without meld restraints conserve energy (Figure S13). All sim-
ulations bunch tightly together with an average drift of (1.1 × 10−5 ± 6 ×
10−6) kJ mol−1 dof−1 ns−1, comparable to other GPU simulation codes[16].

Simulations with meld restraints (Figure S14) display far more variability
in the energy, with individual simulations drifting as much as 2 kJ/mol during a
1 ns run. Importantly, however, the systematic drift is small. At each exchange,
a small random error occurs with approximately zero mean error. The average
energy drift with meld restraints is 7× 10−3 ± 2× 10−3 kJ mol−1 dof−1ns−1.

We expect that the error introduced from force discontinuities in the meld
potential will be less problematic than those introduced by truncating electro-
static or Lennard-Jones interactions. There are two reasons for this. First, the
integration errors with truncated non-bonded interactions typically occur many
times (between different pairs of atoms) per time step. In contrast, errors oc-
cur with meld restraints only when the system crosses between energy basins
defined by different sets of restraints, which is infrequent. Second, the integra-
tion error introduced by truncation of non-bonded interactions is systematic and
typically leads to rapid heating of the system. Temperature coupling algorithms
remove this excess heat, but this creates a non-equilibrium steady-state rather
than the desired equilibrium distribution. In meld the average error is close
to zero, so we expect that the sampled distribution to be close to the desired
distribution.

6.3 Ensemble preservation

Although the energy drift increases with meld restraints, it is not clear what
effect this will have on ensemble properties for thermostatted simulations. To
test this, we applied a simple quantitative test developed by Shirts[17]. We sim-
ulated the system (either with or without meld restraints) at two temperatures:
300 and 310 K for 100 ns using a Langevin thermostat with a 2 fs time step and
γ = 1.0 ps−1. Using the checkensemble tools provided by the Shirts lab[17],
we then assessed if the energy distributions ρ(Etotal) were consistent with the
temperature difference. For both the system with (Figure S15) and without
(Figure S16) meld restraints, the predicted slopes are within statistical error of
the expected slope, deviating by 0.08 and 0.69 standard deviations for the simu-
lations with and without meld restraints, respectively. Thus, although the force
discontinuities due to the meld restraints introduce small, random integration
errors, for simulations using a thermostat, the resulting energy distribution is
statistically indistinguishable from a Boltzmann distribution.
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Figure S15: Systems with MELD restraints have log-ratios of energy distribu-
tions that have the expected slope to within statistical uncertainty. The fit slope
is 0.09 standard deviations from the expected slope.
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Figure S16: Systems without MELD restraints have log-ratios of energy distri-
butions that have the expected slope to within statistical uncertainty. The fit
slope is 0.69 standard deviations from the expected slope.

21



0 20 40 60 80
dAB

0

20

40

60

80

d
B
C

Monte Carlo

0 20 40 60 80
dAB

0

20

40

60

80

d
B
C

Molecular Dynamics

Figure S17: MELD produces results identical to exact Metropolis Monte Carlo
simulations. dAB and dBC are the distances between particles A and B, or B
and C, respectively.

6.4 Comparison with exact Monte Carlo results

To further verify that MELD produces the correct distributions, we compared
the results with those from a simple Metropolis Monte Carlo (MMC) simulation.
MMC does not use forces, and is thus immune to force discontinuities.

We performed 7.5 × 107 steps of either MD or MMC at a temperature of
300K. For MD, we used a Langevin integrator as described in the last section.
For MMC, we perturbed the position of each particle by drawing from a gaussian
distribution with zero mean and a standard deviation of 0.05 nm. Moves were
accepted or rejected according to the standard Metropolis rule.

Figure S17 shows the joint distribution of A–B and B–C distances, us-
ing a kernel density estimate produced by scipy.stats.guassian kde method
with default parameters. Visually, the two distributions are indistinguishable.
As a quantitative comparison, we compared the two distributions using the
scipy.stats.entropy function and find the relative entropy to be < 0.001
bits.

This result strongly indicates that although there are occasional integration
errors, MELD produces the expected conformational distributions.

6.5 Summary and alternatives

We expect that the discontinuities in the MELD restraints will not have a detri-
mental effect because: (1) the system crosses between restraint basins only
rarely; (2) the average integration error is small and is not strongly biased to-
wards heating or cooling the system; (3) tests on a model system show that with
a thermostat, the distribution is statistically indistinguishable from a Boltzmann
distribution; and (4) the results are indistinguishable from exact Monte Carlo
results.
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In some cases, for example certain types of minimization or integration
schemes, it may be desirable or necessary to have continuous forces. This is
easily achieved, but with an increase in computational complexity. One can
replace the sorting operations in MELD with continuous analogues (e.g. using
a sigmoidal functional form), although this entails an increase in computational
complexity from O(n lnn) to O(n2), where n is the number of restraints.

7 Convergence of REMD

A replica exchange simulation is not converged until all replicas are converged[18].
One way to assess convergence is to examine the distributions sampled by each
“walker” as it moves both within conformational space and within the replica
exchange ladder[19]. Figure S18 shows the results for our Ubiquitin simulations,
where it is clear that the walker distributions have not yet converged (the results
for other systems are similar). This lack of convergence precludes a quantitative
analysis of cluster populations (e.g. to get free energies). However, the most
populous clusters nearly always contain an accurate model for all systems we
have studied here. So, even though we cannot quantitatively analyze the clus-
ter populations, the resulting structures are nevertheless useful predictions the
native structure. We are actively exploring ways to improve the convergence,
including optimized versions of replica exchange[19] and alternative sampling
techniques like metadynamics[20, 21]. We expect that longer simulations and
the use of improved sampling techniques will potentially lead to: (1) better
models, as it is possible that MELD has not sampled the lowest-free-energy
models; (2) more accurate identification of the best models, as the cluster pop-
ulations are currently not converged and are thus only semi-quantitative; and
(3) a better picture of the underlying structural preference of the force field and
experimental data as the cluster populations become more converged.

8 Baseline XPLOR protocol

The following script was adapted from xplor-nih tutorial material. The script
was run 200 times, with the input data varied depending on the protein system
under investigation.

xp lor . r equ i r eVe r s i on ( ” 2 .24 ” )

#
# slow coo l ing p ro to co l in t o r s i on ang le space f o r pro t e in G. Uses
# NOE, J−coup l ing r e s t r a i n t s .
#
# t h i s s c r i p t performs annea l ing from an extended s t r u c t u r e .
# I t i s f a s t e r than the o r i g i n a l anneal . py
#
# CDS 2009/07/24
#
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Figure S18: Distributions sampled by all 48 walkers in REMD simulations of
Ubiquitin.
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# t h i s checks f o r typos on the command−l i n e . User−customized arguments can
# a l so be s p e c i f i e d .
#
xp lor . parseArguments ( )

# fi lename fo r output s t r u c t u r e s . This s t r i n g must contain the STRUCTURE
# l i t e r a l so t ha t each c a l c u l a t e d s t r u c t u r e has a unique name . The SCRIPT
# l i t e r a l i s r ep laced by t h i s f i l ename ( or s t d i n i f r e d i r e c t e d us ing <),
# but i t i s op t i ona l .
#
outFilename = ”SCRIPT STRUCTURE. sa ”
numberOfStructures=1 #usua l l y you want to crea t e at l e a s t 20

# pro toco l module has many high− l e v e l h e l p e r f unc t i ons .
#
import pro to co l

import random
pro to co l . initRandomSeed ( int ( random . uniform (0 . 0 , 1 e7 ) ) ) #se t random seed − by time

command = xplor . command

# generate PSF data from sequence and i n i t i a l i z e the co r r ec t parameters .
#
from psfGen import seqToPSF
seqToPSF( ’ sequence . seq ’ )

# generate random extended i n i t i a l s t r u c t u r e with co r r ec t cova l en t geometry
#
pro to co l . genExtendedStructure ( )

#
# a PotLis t conta ins a l i s t o f p o t e n t i a l terms . This i s used to s p e c i f y which
# terms are a c t i v e during ref inement .
#
from potL i s t import PotList
po tL i s t = PotList ( )

# parameters to ramp up during the s imula ted annea l ing p ro t o co l
#
from s imu la t i onToo l s import MultRamp , StaticRamp , In i t i a lParams

rampedParams=[ ]
highTempParams=[ ]

# se t up NOE po t e n t i a l
noe=PotList ( ’ noe ’ )
po tL i s t . append ( noe )
from noePotTools import create NOEPot
for (name , s ca l e , f i l e ) in [ ( ’ a l l ’ , 1 , ” d i s t . t b l ” ) ,

#add en t r i e s f o r a dd i t i ona l t a b l e s
] :

pot = create NOEPot (name , f i l e )
# pot . setPotType (” s o f t ”) # i f you th ink there may be bad NOEs
pot . s e t S c a l e ( s c a l e )
noe . append ( pot )
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rampedParams . append ( MultRamp(2 ,30 , ”noe . s e t S c a l e ( VALUE )” ) )

# Set up d i h ed ra l ang l e s
from xplorPot import XplorPot
d ihedra lRes t ra in tF i l ename=”dihed . t b l ”
p ro to co l . i n i tD i h e d r a l s ( d ihedra lRest ra intF i l ename ,

#useDe fau l t s=False # by de f au l t , symmetric s idecha in
# r e s t r a i n t s are inc luded

)
po tL i s t . append ( XplorPot ( ’CDIH ’ ) )
highTempParams . append ( StaticRamp ( ” potL i s t [ ’CDIH ’ ] . s e t S c a l e (10) ” ) )
rampedParams . append ( StaticRamp ( ” potL i s t [ ’CDIH ’ ] . s e t S c a l e (200) ” ) )
# se t custom va lue s o f t h r e s ho l d va lue s f o r v i o l a t i o n c a l c u l a t i o n
#
potL i s t [ ’CDIH ’ ] . s e tThresho ld ( 5 )

# gyra t ion volume term
#
from gyrPotTools import create GyrPot
gyr = create GyrPot ( ”Vgyr” ,

” r e s i d 1 :56 ” ) # se l e c t i o n shou ld exc lude d i sordered t a i l s
potL i s t . append ( gyr )
rampedParams . append ( MultRamp( . 0 02 , 1 , ” gyr . s e t S c a l e (VALUE)” ) )

# hbdb − hbond database−based term
#
pro to co l . initHBDB ()
potL i s t . append ( XplorPot ( ’HBDB’ ) )

#New tor s i on ang le database p o t e n t i a l
#
from torsionDBPotTools import create TorsionDBPot
torsionDB = create TorsionDBPot ( ’ torsionDB ’ )
po tL i s t . append ( torsionDB )
rampedParams . append ( MultRamp( . 0 02 , 2 , ” torsionDB . s e t S c a l e (VALUE) ” ) )

#
# setup parameters f o r atom−atom r e pu l s i v e term . ( van der Waals− l i k e term )
#
potL i s t . append ( XplorPot ( ’VDW’ ) )
rampedParams . append ( StaticRamp ( ” p ro to co l . initNBond ( ) ” ) )
rampedParams . append ( MultRamp ( 0 . 9 , 0 . 8 ,

”command( ’ param nbonds r ep e l VALUE end end ’ ) ” ) )
rampedParams . append ( MultRamp( . 0 04 , 4 ,

”command( ’ param nbonds rcon VALUE end end ’ ) ” ) )
# nonbonded i n t e r a c t i on only between CA atoms
highTempParams . append ( StaticRamp ( ””” p ro to co l . initNBond ( cutnb=100 ,

rcon =0.004 ,
t o l e r an c e =45,
r e p e l =1.2 ,
onlyCA=1)””” ) )

po tL i s t . append ( XplorPot ( ”BOND” ) )
po tL i s t . append ( XplorPot ( ”ANGL” ) )
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potL i s t [ ’ANGL’ ] . s e tThresho ld ( 5 )
rampedParams . append ( MultRamp (0 . 4 , 1 , ” po tL i s t [ ’ANGL ’ ] . s e t S c a l e (VALUE)” ) )
po tL i s t . append ( XplorPot ( ”IMPR” ) )
po tL i s t [ ’IMPR ’ ] . s e tThresho ld ( 5 )
rampedParams . append ( MultRamp (0 . 1 , 1 , ” po tL i s t [ ’ IMPR ’ ] . s e t S c a l e (VALUE)” ) )

# Give atoms uniform weights , con f i gure bath /molecule f r i c t i o n c o e f f .
#
pro to co l . massSetup ( )

# IVM setup
# the IVM i s used fo r performing dynamics and minimization in tors ion−ang le
# space , and in Cartes ian space .
#
from ivm import IVM
dyn = IVM()

# con f i gure ivm topo logy f o r tors ion−ang le dynamics
#
pro to co l . tors ionTopology (dyn )

# minc used fo r f i n a l ca r t e s i an minimization
#
minc = IVM()
p ro to co l . in i tMin imize (minc )

p ro to co l . car te s ianTopo logy (minc )

# ob j e c t which performs s imula ted annea l ing
#
from s imu la t i onToo l s import AnnealIVM
i n i t t = 3500 . # Need high temp and slow annea l ing to converge
coo l = AnnealIVM( initTemp =i n i t t ,

f inalTemp=25,
tempStep =12.5 ,
ivm=dyn ,
rampedParams = rampedParams )

def ca lcOneStructure ( l oop In f o ) :
””” t h i s func t i on c a l c u l a t e s a s i n g l e s t ruc ture , per forms ana l y s i s on the
s t ruc ture , and then wr i t e s out a pdb f i l e , with remarks .
”””

# generate a new s t r u c t u r e with randomized t o r s i on ang l e s
#
from monteCarlo import randomizeTors ions
randomizeTors ions ( dyn )
p ro to co l . fixupCovalentGeom ( maxIters=100 ,useVDW=1)

# se t t o r s i on ang l e s from r e s t r a i n t s
#
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from t o r s i onToo l s import setTorsionsFromTable
setTorsionsFromTable ( d ihedra lRes t ra in tF i l ename )
p ro to co l . writePDB( l oop In f o . f i l ename ()+” . i n i t ” )

# ca l c . i n i t i a l t ensor o r i en t a t i on
#

# i n i t i a l i z e parameters f o r h igh temp dynamics .
In i t i a lParams ( rampedParams )
# high−temp dynamics se tup − only need to s p e c i f y parameters which
# d i f f e r f r om i n i t i a l va lue s in rampedParams
In i t i a lParams ( highTempParams )

# high temp dynamics
#
pro to co l . in itDynamics (dyn ,

po tL i s t=potList , # po t e n t i a l terms to use
bathTemp=i n i t t ,
i n i t V e l o c i t i e s =1,
f ina lTime=100 , # stops at 800 ps or 8000 s t e p s
numSteps=1000 , # whichever comes f i r s t
p r i n t I n t e r v a l =100)

dyn . setETolerance ( i n i t t /100 ) #used to det . s t e p s i z e . d e f a u l t : t /1000
dyn . run ( )

# i n i t i a l i z e parameters f o r coo l i ng loop
In i t i a lParams ( rampedParams )

# i n i t i a l i z e i n t e g r a t o r f o r s imula ted annea l ing
#
pro to co l . in itDynamics (dyn ,

po tL i s t=potList ,
numSteps=100 , #at each temp : 100 s t ep s or
f ina lTime=.2 , # .2 ps , whichever i s l e s s
p r i n t I n t e r v a l =100)

# perform simula ted annea l ing
#
coo l . run ( )

# f i n a l t o r s i on ang le minimization
#
pro to co l . in i tMin imize (dyn ,

p r i n t I n t e r v a l =50)
dyn . run ( )

# f i n a l a l l− atomic degrees o f freedom minimization
#
pro to co l . in i tMin imize (minc ,

po tL i s t=potList ,
dEPred=10)

minc . run ( )

#do ana l y s i s and wr i t e s t r u c t u r e when t h i s func t i on re tunrs
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pass

from s imu la t i onToo l s import StructureLoop , FinalParams
StructureLoop ( numStructures=numberOfStructures ,

doWriteStructures=True ,
pdbTemplate=outFilename ,
structLoopAct ion=calcOneStructure ,
g enV io l a t i onSta t s=True ,
averageTopFraction =0.5 , #repor t s t a t s on b e s t 50% of s t r u c t s
averageSortPots=[ po tL i s t [ ’BOND’ ] , po tL i s t [ ’ANGL’ ] , po tL i s t [ ’IMPR ’ ] ,

noe , po tL i s t [ ’CDIH ’ ] ] ,
averageContext=FinalParams ( rampedParams ) ,
averageFi lename=”SCRIPT ave . pdb” ,
averagePotLi s t=potL i s t ) . run ( )
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